54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Autism Spectrum Disorder Detection by Hybrid Convolutional Recurrent Neural Networks from Structural and Resting State Functional MRI Images

      research-article
      1 , , 2 , 1
      Autism Research and Treatment
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study aims to increase the accuracy of autism spectrum disorder (ASD) diagnosis based on cognitive and behavioral phenotypes through multiple neuroimaging modalities. We apply machine learning (ML) algorithms to classify ASD patients and healthy control (HC) participants using structural magnetic resonance imaging (s-MRI) together with resting state functional MRI (rs-f-MRI and f-MRI) data from the large multisite data repository ABIDE (autism brain imaging data exchange) and identify important brain connectivity features. The 2D f-MRI images were converted into 3D s-MRI images, and datasets were preprocessed using the Montreal Neurological Institute (MNI) atlas. The data were then denoised to remove any confounding factors. We show, by using three fusion strategies such as early fusion, late fusion, and cross fusion, that, in this implementation, hybrid convolutional recurrent neural networks achieve better performance in comparison to either convolutional neural networks (CNNs) or recurrent neural networks (RNNs). The proposed model classifies subjects as autistic or not according to how functional and anatomical connectivity metrics provide an overall diagnosis based on the autism diagnostic observation schedule (ADOS) standard. Our hybrid network achieved an accuracy of 96% by fusing s-MRI and f-MRI together, which outperforms the methods used in previous studies.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets.

          Analysis and interpretation of functional MRI (fMRI) data have traditionally been based on identifying areas of significance on a thresholded statistical map of the entire imaged brain volume. This form of analysis can be likened to a "fishing expedition." As we become more knowledgeable about the structure-function relationships of different brain regions, tools for a priori hypothesis testing are needed. These tools must be able to generate region of interest masks for a priori hypothesis testing consistently and with minimal effort. Current tools that generate region of interest masks required for a priori hypothesis testing can be time-consuming and are often laboratory specific. In this paper we demonstrate a method of hypothesis-driven data analysis using an automated atlas-based masking technique. We provide a powerful method of probing fMRI data using automatically generated masks based on lobar anatomy, cortical and subcortical anatomy, and Brodmann areas. Hemisphere, lobar, anatomic label, tissue type, and Brodmann area atlases were generated in MNI space based on the Talairach Daemon. Additionally, we interfaced these multivolume atlases to a widely used fMRI software package, SPM99, and demonstrate the use of the atlas tool with representative fMRI data. This tool represents a necessary evolution in fMRI data analysis for testing of more spatially complex hypotheses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity.

            Recent resting-state functional connectivity fMRI (RS-fcMRI) research has demonstrated that head motion during fMRI acquisition systematically influences connectivity estimates despite bandpass filtering and nuisance regression, which are intended to reduce such nuisance variability. We provide evidence that the effects of head motion and other nuisance signals are poorly controlled when the fMRI time series are bandpass-filtered but the regressors are unfiltered, resulting in the inadvertent reintroduction of nuisance-related variation into frequencies previously suppressed by the bandpass filter, as well as suboptimal correction for noise signals in the frequencies of interest. This is important because many RS-fcMRI studies, including some focusing on motion-related artifacts, have applied this approach. In two cohorts of individuals (n=117 and 22) who completed resting-state fMRI scans, we found that the bandpass-regress approach consistently overestimated functional connectivity across the brain, typically on the order of r=.10-.35, relative to a simultaneous bandpass filtering and nuisance regression approach. Inflated correlations under the bandpass-regress approach were associated with head motion and cardiac artifacts. Furthermore, distance-related differences in the association of head motion and connectivity estimates were much weaker for the simultaneous filtering approach. We recommend that future RS-fcMRI studies ensure that the frequencies of nuisance regressors and fMRI data match prior to nuisance regression, and we advocate a simultaneous bandpass filtering and nuisance regression strategy that better controls nuisance-related variability. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Salience network-based classification and prediction of symptom severity in children with autism.

              Autism spectrum disorder (ASD) affects 1 in 88 children and is characterized by a complex phenotype, including social, communicative, and sensorimotor deficits. Autism spectrum disorder has been linked with atypical connectivity across multiple brain systems, yet the nature of these differences in young children with the disorder is not well understood. To examine connectivity of large-scale brain networks and determine whether specific networks can distinguish children with ASD from typically developing (TD) children and predict symptom severity in children with ASD. Case-control study performed at Stanford University School of Medicine of 20 children 7 to 12 years old with ASD and 20 age-, sex-, and IQ-matched TD children. Between-group differences in intrinsic functional connectivity of large-scale brain networks, performance of a classifier built to discriminate children with ASD from TD children based on specific brain networks, and correlations between brain networks and core symptoms of ASD. We observed stronger functional connectivity within several large-scale brain networks in children with ASD compared with TD children. This hyperconnectivity in ASD encompassed salience, default mode, frontotemporal, motor, and visual networks. This hyperconnectivity result was replicated in an independent cohort obtained from publicly available databases. Using maps of each individual's salience network, children with ASD could be discriminated from TD children with a classification accuracy of 78%, with 75% sensitivity and 80% specificity. The salience network showed the highest classification accuracy among all networks examined, and the blood oxygen-level dependent signal in this network predicted restricted and repetitive behavior scores. The classifier discriminated ASD from TD in the independent sample with 83% accuracy, 67% sensitivity, and 100% specificity. Salience network hyperconnectivity may be a distinguishing feature in children with ASD. Quantification of brain network connectivity is a step toward developing biomarkers for objectively identifying children with ASD.
                Bookmark

                Author and article information

                Contributors
                Journal
                Autism Res Treat
                Autism Res Treat
                AURT
                Autism Research and Treatment
                Hindawi
                2090-1925
                2090-1933
                2023
                20 December 2023
                : 2023
                : 4136087
                Affiliations
                1Istanbul Okan University, Istanbul, Türkiye
                2Gebze Technical University, Darıca, Türkiye
                Author notes

                Academic Editor: R. McKell Carter

                Author information
                https://orcid.org/0000-0001-6837-0436
                https://orcid.org/0000-0002-5456-8385
                https://orcid.org/0000-0003-2231-875X
                Article
                10.1155/2023/4136087
                10752691
                38152612
                321e2cf1-06aa-414e-b1e6-b904214f9ecd
                Copyright © 2023 Emel Koc et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 April 2023
                : 19 October 2023
                : 22 November 2023
                Categories
                Research Article

                Neurology
                Neurology

                Comments

                Comment on this article