Establishing normal liver stiffness (LS) values in healthy livers is a prerequisite to differentiate normal from pathological LS values. Our aim was to define normal LS using two novel elastography methods head-to-head and to assess the number of measurements, variability and reproducibility.
We evaluated shear wave elastography (SWE) methods integrated in Samsung RS80A and GE S8 by obtaining LS measurements (LSM) in 100 healthy subjects (20–70 years). Transient Elastography (TE) was used as reference method. Data were analyzed according to age, sex, BMI and 5 vs. 10 measurements. All subjects underwent B-mode ultrasound examination and lab tests to exclude liver pathology. Interobserver variation was evaluated in a subset (n = 24).
Both methods showed excellent feasibility, measuring LS in all subjects. LSM-mean for GE S8 2D-SWE was higher compared to TE (4.5±0.8 kPa vs. 4.2±1.1, p<0.001) and Samsung RS80A (4.1±0.8 kPa, p<0.001). Both methods showed low intra- and interobserver variation. LSM-mean was significantly higher in males than females using 2D-SWE, while a similar trend for Samsung SWE did not reach significance. No method demonstrated statistical significant difference in LSM across age and BMI groups nor between LSM-mean based on 5 vs. 10 measurements.
LSM was performed with high reproducibility in healthy adult livers. LSM-mean was significantly higher for GE S8 2D-SWE compared to Samsung RS80A and TE in healthy livers. Males had higher LSM than females. No method demonstrated statistical significant difference in LSM-mean across age- and non-obese BMI groups. Our results indicate that five LSM may be sufficient for reliable results.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.