21
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Epidemiology of CKD and its Complications

      Submit here by August 31, 2024

      About Kidney and Blood Pressure Research: 2.3 Impact Factor I 4.8 CiteScore I 0.674 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mitochondrial Dysfunction and Altered Renal Metabolism in Dahl Salt-Sensitive Rats

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims: The kidney plays a critical role in the control of blood pressure and its elevation in salt-induced hypertension. Mitochondrial dysfunction, especially in energy metabolism, has been associated with hypertension. Here, we aimed to investigate mitochondrial function and metabolic features in renal mitochondria of Dahl salt-sensitive (SS) rats to gain further insight into the relationship between mitochondrial metabolism and predisposition to hypertension. Methods: In this study, SS rats fed low-salt (LS) or high-salt (HS) diets were used to investigate mitochondrial function and metabolism including mitochondrial enzyme activities, pyridine nucleotides, metabolites, and oxidative stress by biochemical analysis and gas chromatography-mass spectrometer (GC-MS). Results: Significantly lower activity levels of fumarase, isocitrate dehydrogenase and succinyl-CoA synthetase were observed in renal mitochondria of SS rats compared with SS.13<sup>BN</sup> control rats fed LS diets. Intra-mitochondrial pyridine nucleotide content and mitochondrial metabolism were adversely affected in SS rats. In accordance with this, reduced ATP production, Δψm, and superoxide dismutase (SOD) activity were also observed in mitochondria of the renal medulla and cortex of SS rats. Moreover, ATP production was further impaired and oxidative stress was increased, confirming that the mitochondria of SS rats fed HS diets were dysfunctional compared to those of rats fed LS diets. Conclusions: Our data demonstrated that the renal mitochondria of SS rats exhibited complicated metabolic alteration and dysfunction in low-salt diets, and high-salt diets aggravated these dysfunctions. Thus, these results may be associated with renal dysfunction, which, in turn, would help in understanding the development of salt-sensitive hypertension.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Functional assessment of isolated mitochondria in vitro.

          Mitochondria play a pivotal role in cellular function, not only as a major site of ATP production, but also by regulating energy expenditure, apoptosis signaling, and production of reactive oxygen species. Altered mitochondrial function is reported to be a key underlying mechanism of many pathological states and in the aging process. Functional measurements of intact mitochondria isolated from fresh tissue provides distinct information regarding the function of these organelles that complements conventional mitochondrial assays using previously frozen tissue as well as in vivo assessment using techniques such as magnetic resonance and near-infrared spectroscopy. This chapter describes the process by which mitochondria are isolated from small amounts of human skeletal muscle obtained by needle biopsy and two approaches used to assess mitochondrial oxidative capacity and other key components of mitochondrial physiology. We first describe a bioluminescent approach for measuring the rates of mitochondrial ATP production. Firefly luciferase catalyzes a light-emitting reaction whereby the substrate luciferin is oxidized in an ATP-dependent manner. A luminometer is used to quantify the light signal, which is proportional to ATP concentration. We also review a method involving polarographic measurement of oxygen consumption. Measurements of oxygen consumption, which previously required large amounts of tissue, are now feasible with very small amounts of sample obtained by needle biopsy due to recent advances in the field of high-resolution respirometry. We illustrate how careful attention to substrate combinations and inhibitors allows an abundance of unique functional information to be obtained from isolated mitochondria, including function at various energetic states, oxidative capacity with electron flow through distinct complexes, coupling of oxygen consumption to ATP production, and membrane integrity. These measurements, together with studies of mitochondrial DNA abundance, mRNA levels, protein expression, and synthesis rates of mitochondrial proteins provide insightful mechanistic information about mitochondria in a variety of tissue types.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Defects in Mitochondrial ATP Synthesis in Dystrophin-Deficient Mdx Skeletal Muscles May Be Caused by Complex I Insufficiency

            Duchenne Muscular Dystrophy is a chronic, progressive and ultimately fatal skeletal muscle wasting disease characterised by sarcolemmal fragility and intracellular Ca2+ dysregulation secondary to the absence of dystrophin. Mounting literature also suggests that the dysfunction of key energy systems within the muscle may contribute to pathological muscle wasting by reducing ATP availability to Ca2+ regulation and fibre regeneration. No study to date has biochemically quantified and contrasted mitochondrial ATP production capacity by dystrophic mitochondria isolated from their pathophysiological environment such to determine whether mitochondria are indeed capable of meeting this heightened cellular ATP demand, or examined the effects of an increasing extramitochondrial Ca2+ environment. Using isolated mitochondria from the diaphragm and tibialis anterior of 12 week-old dystrophin-deficient mdx and healthy control mice (C57BL10/ScSn) we have demonstrated severely depressed Complex I-mediated mitochondrial ATP production rate in mdx mitochondria that occurs irrespective of the macronutrient-derivative substrate combination fed into the Kreb’s cycle, and, which is partially, but significantly, ameliorated by inhibition of Complex I with rotenone and stimulation of Complex II-mediated ATP-production with succinate. There was no difference in the MAPR response of mdx mitochondria to increasing extramitochondrial Ca2+ load in comparison to controls, and 400 nM extramitochondrial Ca2+ was generally shown to be inhibitory to MAPR in both groups. Our data suggests that DMD pathology is exacerbated by a Complex I deficiency, which may contribute in part to the severe reductions in ATP production previously observed in dystrophic skeletal muscle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondrial dysfunction accounts for aldosterone-induced epithelial-to-mesenchymal transition of renal proximal tubular epithelial cells.

              Epithelial-mesenchymal transition (EMT) plays a pivotal role in the pathogenesis of renal tubulointerstitial fibrosis. We previously demonstrated that aldosterone (Aldo)-induced EMT is dependent on mitochondrial-derived oxidative stress. This study investigated whether mitochondrial dysfunction (MtD) is involved in the pathogenesis of EMT and whether peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a major regulator of oxidative metabolism and mitochondrial function, prevents EMT by improving MtD. Aldo decreased PGC-1α expression while increasing its acetylation and induced MtD, as evidenced by oxidative stress, mitochondrial membrane potential collapse, mitochondrial DNA damage, and mitochondrial complex activity reduction. Aldo time-dependently induced p66Shc phosphorylation and expression. Mineralocorticoid receptor antagonist eplerenone and p66Shc short interfering RNA prevented Aldo-induced MtD and EMT, as evidenced by downregulation of α-smooth muscle actin and upregulation of E-cadherin. Mitochondrial DNA depletion by ethidium bromide or mitochondrial transcription factor A inhibitory RNA (RNAi) induced MtD, further promoting EMT. RNAi-mediated suppression of PGC-1α induced MtD and EMT, whereas overexpression of PGC-1α prevented Aldo-induced MtD and inhibited EMT. Similarly, overexpression of silent mating type information regulation 2 homolog 1 (SIRT1), a gene upstream of PGC-1α, or the SIRT1 activator resveratrol restored Aldo-induced MtD and EMT by upregulating PGC-1α. These findings, which implicate a role for MtD in EMT and suggest that SIRT1 and PGC-1α coordinate to improve mitochondrial function and EMT, may guide us in therapeutic strategies for renal tubulointerstitial fibrosis. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                KBR
                Kidney Blood Press Res
                10.1159/issn.1420-4096
                Kidney and Blood Pressure Research
                S. Karger AG
                1420-4096
                1423-0143
                2017
                October 2017
                19 September 2017
                : 42
                : 3
                : 587-597
                Affiliations
                [_a] aKey Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
                [_b] bDepartment of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
                Author notes
                *Dr. Zhongmin Tian, School of Life Science and Technology, Xi’an Jiaotong University,, 28 Xianning west road, Xi’an, Shaanxi 710049 (China), Tel. +86-029-82667731, Fax +86-029-82667731, E-Mail zmtian@mail.xjtu.edu.cn
                Article
                479846 Kidney Blood Press Res 2017;42:587–597
                10.1159/000479846
                28922660
                18239054-2f46-417f-b5c4-7c290171bea7
                © 2017 The Author(s). Published by S. Karger AG, Basel

                This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 20 March 2017
                : 26 May 2017
                Page count
                Figures: 6, Tables: 1, Pages: 11
                Categories
                Original Paper

                Cardiovascular Medicine,Nephrology
                Atp production,Dahl salt-sensitive rats,Metabolic alteration,Mitochondrial dysfunction,Renal

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content58

                Cited by7

                Most referenced authors476