20
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      An in-silico evaluation of COVID-19 main protease with clinically approved drugs

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel strain of coronavirus, namely, SARS-CoV-2 identified in Wuhan city of China in December 2019, continues to spread at a rapid rate worldwide. There are no specific therapies available and investigations regarding the treatment of this disease are still lacking. In order to identify a novel potent inhibitor, we performed blind docking studies on the main virus protease M pro with eight approved drugs belonging to four pharmacological classes such as: anti-malarial, anti-bacterial, anti-infective and anti-histamine. Among the eight studied compounds, Lymecycline and Mizolastine appear as potential inhibitors of this protease. When docked against M pro crystal structure, these two compounds revealed a minimum binding energy of -8.87 and -8.71 kcal/mol with 168 and 256 binding modes detected in the binding substrate pocket, respectively. Further, to study the interaction mechanism and conformational dynamics of protein-ligand complexes, Molecular dynamic simulation and MM/PBSA binding free calculations were performed. Our results showed that both Lymecycline and Mizolastine bind in the active site. And exhibited good binding affinities towards target protein. Moreover, the ADMET analysis also indicated drug-likeness properties. Thus it is suggested that the identified compounds can inhibit Chymotrypsin-like protease (3CL pro) of SARS-CoV-2.

          Graphical abstract

          Highlights

          • Lymecycline and Mizolastine fit into M pro binding substrate pocket with a binding energies of -8.87 kcal/mol and -8.71 kcal/mol, respectively.

          • Lymecycline and Mizolastine had 168 and 256 binding modes detected in the binding substrate pocket, respectively.

          • ADMET analysis indicated drug-likeness properties of both Lymecycline and Mizolastine.

          • Molecular dynamic simulation and MM/PBSA binding free calculations showed that both Lymecycline and Mizolastine bind in the active site. And exhibited good binding affinities towards target protein

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A new coronavirus associated with human respiratory disease in China

          Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health 1–3 . Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing 4 of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here ‘WH-Human 1’ coronavirus (and has also been referred to as ‘2019-nCoV’). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China 5 . This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The species Severe acute respiratory syndrome-related coronavirus : classifying 2019-nCoV and naming it SARS-CoV-2

            The present outbreak of a coronavirus-associated acute respiratory disease called coronavirus disease 19 (COVID-19) is the third documented spillover of an animal coronavirus to humans in only two decades that has resulted in a major epidemic. The Coronaviridae Study Group (CSG) of the International Committee on Taxonomy of Viruses, which is responsible for developing the classification of viruses and taxon nomenclature of the family Coronaviridae, has assessed the placement of the human pathogen, tentatively named 2019-nCoV, within the Coronaviridae. Based on phylogeny, taxonomy and established practice, the CSG recognizes this virus as forming a sister clade to the prototype human and bat severe acute respiratory syndrome coronaviruses (SARS-CoVs) of the species Severe acute respiratory syndrome-related coronavirus, and designates it as SARS-CoV-2. In order to facilitate communication, the CSG proposes to use the following naming convention for individual isolates: SARS-CoV-2/host/location/isolate/date. While the full spectrum of clinical manifestations associated with SARS-CoV-2 infections in humans remains to be determined, the independent zoonotic transmission of SARS-CoV and SARS-CoV-2 highlights the need for studying viruses at the species level to complement research focused on individual pathogenic viruses of immediate significance. This will improve our understanding of virus–host interactions in an ever-changing environment and enhance our preparedness for future outbreaks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure of Mpro from COVID-19 virus and discovery of its inhibitors

              A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the aetiological agent responsible for the 2019-2020 viral pneumonia outbreak of coronavirus disease 2019 (COVID-19)1-4. Currently, there are no targeted therapeutic agents for the treatment of this disease, and effective treatment options remain very limited. Here we describe the results of a programme that aimed to rapidly discover lead compounds for clinical use, by combining structure-assisted drug design, virtual drug screening and high-throughput screening. This programme focused on identifying drug leads that target main protease (Mpro) of SARS-CoV-2: Mpro is a key enzyme of coronaviruses and has a pivotal role in mediating viral replication and transcription, making it an attractive drug target for SARS-CoV-25,6. We identified a mechanism-based inhibitor (N3) by computer-aided drug design, and then determined the crystal structure of Mpro of SARS-CoV-2 in complex with this compound. Through a combination of structure-based virtual and high-throughput screening, we assayed more than 10,000 compounds-including approved drugs, drug candidates in clinical trials and other pharmacologically active compounds-as inhibitors of Mpro. Six of these compounds inhibited Mpro, showing half-maximal inhibitory concentration values that ranged from 0.67 to 21.4 μM. One of these compounds (ebselen) also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of our screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases for which no specific drugs or vaccines are available.
                Bookmark

                Author and article information

                Journal
                J Mol Graph Model
                J. Mol. Graph. Model
                Journal of Molecular Graphics & Modelling
                Elsevier Inc.
                1093-3263
                1873-4243
                21 September 2020
                21 September 2020
                : 107758
                Affiliations
                [a ]Nature and Life Sciences department, Benyoucef Benkhedda University, 16000, Didouche Mourad, Algiers, Algeria
                [b ]Faculty of Biological Sciences, Cellular and Molecular Biology, University of Science and Technology Houari Boumediene, BP 32, El Alia Bab Ezzouar, 16111, Algiers, Algeria
                [c ]Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi, 75210, Pakistan
                Author notes
                []Corresponding author. Nature and Life Sciences department, Benyoucef Benkhedda University, 16000, Didouche Mourad, Algiers, Algeria,
                Article
                S1093-3263(20)30547-7 107758
                10.1016/j.jmgm.2020.107758
                7503128
                1372c341-7dd9-47e1-9069-7752feeb2173
                © 2020 Elsevier Inc. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 29 June 2020
                : 24 August 2020
                : 15 September 2020
                Categories
                Article

                Bioinformatics & Computational biology
                covid-19 main protease,molecular docking,swissdock,approved drugs,md simulation,admet

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content393

                Cited by8

                Most referenced authors2,644