7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Haiti has more forest than previously reported: land change 2000–2015

      research-article
      1 , , 2
      PeerJ
      PeerJ Inc.
      Land use/cover, Forest, Deforestation, Haiti, Landsat imagery, Google Earth Engine

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Estimates of forest cover have important political, conservation, and funding implications, but methods vary greatly. Haiti has often been cited as one of the most deforested countries in the world, yet estimates of forest cover range from <1% to 33%. Here, we analyze land change for seven land cover classes (forest, shrub land, agriculture/pasture, plantation, urban/infrastructure, barren land, and water) between 2000 and 2015 using Landsat imagery (30 m resolution) in the Google Earth Engine platform. Forest cover was estimated at 26% in 2000 and 21% in 2015. Although forest cover is declining in Haiti, our quantitative analysis resulted in considerably higher forest cover than what is usually reported by local and international institutions. Our results determined that areas of forest decline were mainly converted to shrubs and mixed agriculture/pasture. An important driver of forest loss and degradation could be the high demand for charcoal, which is the principal source of cooking fuel. Our results differ from other forest cover estimates and forest reports from national and international institutions, most likely due to differences in forest definition, data sources, spatial resolution, and methods. In the case of Haiti, this work demonstrates the need for clear and functional definitions and classification methods to accurately represent land use/cover change. Regardless of how forests are defined, forest cover in Haiti will continue to decline unless corrective actions are taken to protect remaining forest patches. This can serve as a warning of the destructive land use patterns and can help us target efforts for better planning, management, and conservation.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: not found
          • Article: not found

          Google Earth Engine: Planetary-scale geospatial analysis for everyone

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-resolution global maps of 21st-century forest cover change.

            Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil's well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms. These results depict a globally consistent and locally relevant record of forest change.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global consequences of land use.

              Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity. Such changes in land use have enabled humans to appropriate an increasing share of the planet's resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality, and ameliorate infectious diseases. We face the challenge of managing trade-offs between immediate human needs and maintaining the capacity of the biosphere to provide goods and services in the long term.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                26 October 2020
                2020
                : 8
                : e9919
                Affiliations
                [1 ]Department of Environmental Sciences, Universidad de Puerto Rico, Recinto de Rio Pidras , San Juan, Puerto Rico, Puerto Rico
                [2 ]Department of Biology, Universidad de Puerto Rico, Recinto de Rio Pidras , San Juan, Puerto Rico, Puerto Rico
                Article
                9919
                10.7717/peerj.9919
                7594639
                12b899bd-2963-44cf-ac37-b0a7fe68194d
                © 2020 Pauleus and Aide

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 10 February 2020
                : 20 August 2020
                Funding
                Funded by: Integrative Graduate Education and Research Traineeship Program (IGERT)
                Funded by: International Foundation for Science (IFS)
                This research was supported by the Integrative Graduate Education and Research Traineeship Program (IGERT) and International Foundation for Science (IFS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Biodiversity
                Ecology
                Environmental Impacts
                Forestry
                Spatial and Geographic Information Science

                land use/cover,forest,deforestation,haiti,landsat imagery,google earth engine

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content618

                Cited by3

                Most referenced authors986