18
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Authors - publish your SDGs-related research with EDP Sciences. Find out more.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Physiological and biochemical aspects of the fungicidal action of promising biocontrol Bacillus subtilis strains against phytopathogenic fungi pp. Fusarium and Pyrenophora

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The article presents some aspects of the interaction between biocontrol Bacillus subtilis strains and phytopathogenic fungi Fusarium and Pyrenophora. The presence of antifungal metabolites complexes in the culture fluid of the strains, including surfactin and iturin A has been found. The nature of the changes in the mycelium of phytopathogenic fungi is examined when co-cultivated with B.subtilis strains.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group

          Over the last seven decades, applications using members of the Bacillus subtilis group have emerged in both food processes and crop protection industries. Their ability to form survival endospores and the plethora of antimicrobial compounds they produce has generated an increased industrial interest as food preservatives, therapeutic agents and biopesticides. In the growing context of food biopreservation and biological crop protection, this review suggests a comprehensive way to visualize the antimicrobial spectrum described within the B. subtilis group, including volatile compounds. This classification distinguishes the bioactive metabolites based on their biosynthetic pathways and chemical nature: i.e., ribosomal peptides (RPs), volatile compounds, polyketides (PKs), non-ribosomal peptides (NRPs), and hybrids between PKs and NRPs. For each clade, the chemical structure, biosynthesis and antimicrobial activity are described and exemplified. This review aims at constituting a convenient and updated classification of antimicrobial metabolites from the B. subtilis group, whose complex phylogeny is prone to further development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens

            Some isolates of the B acillus subtilis/amyloliquefaciens species are known for their plant protective activity against fungal phytopathogens. It is notably due to their genetic potential to form an impressive array of antibiotics including non-ribosomal lipopeptides (LPs). In the work presented here, we wanted to gain further insights into the relative role of these LPs in the global antifungal activity of B . subtilis/amyloliquefaciens. To that end, a comparative study was conducted involving multiple strains that were tested against four different phytopathogens. We combined various approaches to further exemplify that secretion of those LPs is a crucial trait in direct pathogen ward off and this can actually be generalized to all members of these species. Our data illustrate that for each LP family, the fungitoxic activity varies in function of the target species and that the production of iturins and fengycins is modulated by the presence of pathogens. Our data on the relative involvement of these LPs in the biocontrol activity and modulation of their production are discussed in the context of natural conditions in the rhizosphere.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms

              Biofilm formation is a social behaviour that generates favourable conditions for sustained survival in the natural environment. For the Gram-positive bacterium Bacillus subtilis the process involves the differentiation of cell fate within an isogenic population and the production of communal goods that form the biofilm matrix. Here we review recent progress in understanding the regulatory pathways that control biofilm formation and highlight developments in understanding the composition, function and structure of the biofilm matrix.
                Bookmark

                Author and article information

                Journal
                BIO Web of Conferences
                BIO Web Conf.
                EDP Sciences
                2117-4458
                2020
                June 22 2020
                2020
                : 21
                : 00016
                Article
                10.1051/bioconf/20202100016
                0d13fae9-0e57-4f1f-a09c-a57d505762b4
                © 2020

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content89

                Most referenced authors112