19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Detecting Sexism in German Online Newspaper Comments with Open-Source Text Embeddings (Team GDA, GermEval2024 Shared Task 1: GerMS-Detect, Subtasks 1 and 2, Closed Track)

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sexism in online media comments is a pervasive challenge that often manifests subtly, complicating moderation efforts as interpretations of what constitutes sexism can vary among individuals. We study monolingual and multilingual open-source text embeddings to reliably detect sexism and misogyny in German-language online comments from an Austrian newspaper. We observed classifiers trained on text embeddings to mimic closely the individual judgements of human annotators. Our method showed robust performance in the GermEval 2024 GerMS-Detect Subtask 1 challenge, achieving an average macro F1 score of 0.597 (4th place, as reported on Codabench). It also accurately predicted the distribution of human annotations in GerMS-Detect Subtask 2, with an average Jensen-Shannon distance of 0.301 (2nd place). The computational efficiency of our approach suggests potential for scalable applications across various languages and linguistic contexts.

          Related collections

          Author and article information

          Journal
          16 September 2024
          Article
          2409.10341
          0c9b5f63-c248-4056-8a39-5eb8911921c0

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          6 pages, 4 figures, 2 tables
          cs.CL

          Theoretical computer science
          Theoretical computer science

          Comments

          Comment on this article