Postoperative delirium in patients aged 60 years or older with hip fractures adversely affects clinical and functional outcomes. The economic cost of delirium is estimated to be as high as USD 25,000 per patient, with a total budgetary impact between USD 6.6 to USD 82.4 billion annually in the United States alone. Forty percent of delirium episodes are preventable, and accurate risk stratification can decrease the incidence and improve clinical outcomes in patients. A previously developed clinical prediction model (the SORG Orthopaedic Research Group hip fracture delirium machine-learning algorithm) is highly accurate on internal validation (in 28,207 patients with hip fractures aged 60 years or older in a US cohort) in identifying at-risk patients, and it can facilitate the best use of preventive interventions; however, it has not been tested in an independent population. For an algorithm to be useful in real life, it must be valid externally, meaning that it must perform well in a patient cohort different from the cohort used to "train" it. With many promising machine-learning prediction models and many promising delirium models, only few have also been externally validated, and even fewer are international validation studies.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.