This paper presents initial results from the ESA-funded ``SUPPPPRESS'' project, which aims to develop high-performance liquid-crystal coronagraphs for direct imaging of Earth-like exoplanets in reflected light. The project focuses on addressing the significant challenge of polarization leakage in vector vortex coronagraphs (VVCs). We utilize newly manufactured multi-grating, liquid-crystal VVCs, consisting of a two- or three-element stack of vortex and grating patterns, to reduce this leakage to the 10−10 contrast level. We detail the experimental setups, including calibration techniques with polarization microscopes and Mueller matrix ellipsometers to enhance the direct-write accuracy of the liquid-crystal patterns. The performance testing of these coronagraph masks will be conducted on the THD2 high-contrast imaging testbed in Paris.