17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Tuning the intermolecular interaction of A2-A1-D-A1-A2 type non-fullerene acceptors by substituent engineering for organic solar cells with ultrahigh VOC of ~1.2 V

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An electron acceptor challenging fullerenes for efficient polymer solar cells.

            A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized. Fullerene-free polymer solar cells (PSCs) based on the ITIC acceptor are demonstrated to exhibit power conversion efficiencies of up to 6.8%, a record for fullerene-free PSCs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Organic solar cells based on non-fullerene acceptors

              Organic solar cells (OSCs) have been dominated by donor:acceptor blends based on fullerene acceptors for over two decades. This situation has changed recently, with non-fullerene (NF) OSCs developing very quickly. The power conversion efficiencies of NF OSCs have now reached a value of over 13%, which is higher than the best fullerene-based OSCs. NF acceptors show great tunability in absorption spectra and electron energy levels, providing a wide range of new opportunities. The coexistence of low voltage losses and high current generation indicates that new regimes of device physics and photophysics are reached in these systems. This Review highlights these opportunities made possible by NF acceptors, and also discuss the challenges facing the development of NF OSCs for practical applications.
                Bookmark

                Author and article information

                Journal
                Science China Chemistry
                Sci. China Chem.
                Springer Science and Business Media LLC
                1674-7291
                1869-1870
                November 2020
                September 29 2020
                November 2020
                : 63
                : 11
                : 1666-1674
                Article
                10.1007/s11426-020-9840-x
                03f5f24c-2050-4d3c-a470-5b705d5cd0be
                © 2020

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article