50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A new unsupervised gene clustering algorithm based on the integration of biological knowledge into expression data

      research-article
      1 , , 1 , 1
      BMC Bioinformatics
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Gene clustering algorithms are massively used by biologists when analysing omics data. Classical gene clustering strategies are based on the use of expression data only, directly as in Heatmaps, or indirectly as in clustering based on coexpression networks for instance. However, the classical strategies may not be sufficient to bring out all potential relationships amongst genes.

          Results

          We propose a new unsupervised gene clustering algorithm based on the integration of external biological knowledge, such as Gene Ontology annotations, into expression data. We introduce a new distance between genes which consists in integrating biological knowledge into the analysis of expression data. Therefore, two genes are close if they have both similar expression profiles and similar functional profiles at once. Then a classical algorithm (e.g. K-means) is used to obtain gene clusters. In addition, we propose an automatic evaluation procedure of gene clusters. This procedure is based on two indicators which measure the global coexpression and biological homogeneity of gene clusters. They are associated with hypothesis testing which allows to complement each indicator with a p-value.

          Our clustering algorithm is compared to the Heatmap clustering and the clustering based on gene coexpression network, both on simulated and real data. In both cases, it outperforms the other methodologies as it provides the highest proportion of significantly coexpressed and biologically homogeneous gene clusters, which are good candidates for interpretation.

          Conclusion

          Our new clustering algorithm provides a higher proportion of good candidates for interpretation. Therefore, we expect the interpretation of these clusters to help biologists to formulate new hypothesis on the relationships amongst genes.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reverse engineering gene networks using singular value decomposition and robust regression.

            We propose a scheme to reverse-engineer gene networks on a genome-wide scale using a relatively small amount of gene expression data from microarray experiments. Our method is based on the empirical observation that such networks are typically large and sparse. It uses singular value decomposition to construct a family of candidate solutions and then uses robust regression to identify the solution with the smallest number of connections as the most likely solution. Our algorithm has O(log N) sampling complexity and O(N(4)) computational complexity. We test and validate our approach in a series of in numero experiments on model gene networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes

              Background A cluster analysis is the most commonly performed procedure (often regarded as a first step) on a set of gene expression profiles. In most cases, a post hoc analysis is done to see if the genes in the same clusters can be functionally correlated. While past successes of such analyses have often been reported in a number of microarray studies (most of which used the standard hierarchical clustering, UPGMA, with one minus the Pearson's correlation coefficient as a measure of dissimilarity), often times such groupings could be misleading. More importantly, a systematic evaluation of the entire set of clusters produced by such unsupervised procedures is necessary since they also contain genes that are seemingly unrelated or may have more than one common function. Here we quantify the performance of a given unsupervised clustering algorithm applied to a given microarray study in terms of its ability to produce biologically meaningful clusters using a reference set of functional classes. Such a reference set may come from prior biological knowledge specific to a microarray study or may be formed using the growing databases of gene ontologies (GO) for the annotated genes of the relevant species. Results In this paper, we introduce two performance measures for evaluating the results of a clustering algorithm in its ability to produce biologically meaningful clusters. The first measure is a biological homogeneity index (BHI). As the name suggests, it is a measure of how biologically homogeneous the clusters are. This can be used to quantify the performance of a given clustering algorithm such as UPGMA in grouping genes for a particular data set and also for comparing the performance of a number of competing clustering algorithms applied to the same data set. The second performance measure is called a biological stability index (BSI). For a given clustering algorithm and an expression data set, it measures the consistency of the clustering algorithm's ability to produce biologically meaningful clusters when applied repeatedly to similar data sets. A good clustering algorithm should have high BHI and moderate to high BSI. We evaluated the performance of ten well known clustering algorithms on two gene expression data sets and identified the optimal algorithm in each case. The first data set deals with SAGE profiles of differentially expressed tags between normal and ductal carcinoma in situ samples of breast cancer patients. The second data set contains the expression profiles over time of positively expressed genes (ORF's) during sporulation of budding yeast. Two separate choices of the functional classes were used for this data set and the results were compared for consistency. Conclusion Functional information of annotated genes available from various GO databases mined using ontology tools can be used to systematically judge the results of an unsupervised clustering algorithm as applied to a gene expression data set in clustering genes. This information could be used to select the right algorithm from a class of clustering algorithms for the given data set.
                Bookmark

                Author and article information

                Journal
                BMC Bioinformatics
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central
                1471-2105
                2013
                7 February 2013
                : 14
                : 42
                Affiliations
                [1 ]Applied Mathematics Department, Agrocampus Ouest, 65, rue de Saint-Brieuc, Rennes, France
                Article
                1471-2105-14-42
                10.1186/1471-2105-14-42
                3635920
                23387364
                00cab83b-8a8b-4272-9525-afd32945b010
                Copyright ©2013 Verbanck et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 April 2012
                : 18 January 2013
                Categories
                Methodology Article

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article